فصل اول: دریچه ورود به دنیای بیگ دیتا
فصل دوم: ابزارهای فنی کار با بیگ دیتا

درس دوم: آپاچی اسپارک

دیگه همه مون می دونیم چرا مدل هایی مثل مپ ردیوس بوجود اومدن. علتش همین بیگ دیتا است. دیتامون بیگ میشه، نمی تونیم روی یه سرور جاش بدیم، مجبوریم بریم سمت مقیاس پذیری افقی و Distributed Systems و به امثال San Storage بگیم بای بای. گوگل اعظم اول Google File System – GFS رو ارائه داد و بعدش HDFS از روی همین GFS ساخته شد و بعدش گوگل Big Table رو داد و HBase هم از روی همین BT ساخته شد که چیز خفنیه.

هدوپ و مپ ردیوس

فلسفه کار در مپ ردیوس این است: بجای اینکه دیتا رو روی سرورهامون پخش کنیم میآیم کدمون رو میاریم روی سرورهامون و اجرا می کنیم. گذشته از نحوه اجرای مپ ردیوس که از مپ، شافل و ردیوس تشکیل شده باید گفت کُند هست. علتش هم اینه که دیتا رو از روی HDFS میخونه دوباره توی HDFS قرارش میده و به همین منوال ادامه پیدا می کنه. HDFS هم ذاتا کُند هست چرا؟ چون دیسک بیس هست. در ضمن بصورت پیش فرض باید Replication=3 باشه و همین مزید بر علت میشه. پس از اونجایی که هدوپ دیسک بیس هست نرخ I/O بالایی داره و برای کارهای Batch خوبه و باید بدونیم از Streaming پشتیبانی نمی کنه. ضمنا برای کارهای Iterative مثل الگوریتم های ماشین لرنینگی از جمله خوشه بندی مناسب نیست اونم بخاطر سرعت پایینی که داره. یه نقطه ضعفی که هدوپ داره اینه که برای هرکاری هی ابزار خاص خودشو داره که باعث میشه ملت قاطی کنن خدایی. میخوای کار x انجام بدی برو ابزار xn رو یاد بگیر. همین کارو سخت میکنه. هرکدوم از این ابزارها رو باید نصب کرد که خودش ماجرایی داره بعدش باید یاد گرفت که زمان بره و Maintenance اون هم بحث خاص خودشو داره.

در تصویر زیر مثال معروف و سنتی Word Count رو با استفاده از Map Reduce مشاهده می کنید. یه نکته ای که هست و بعضا دیدم فراموش میشه اینه که فازهای Shuffle and Sort توی MR فراموش میشه. گام های فرآیند MR عبارتند از:

Map > Partition > Shuffle > Sort > Reduce

بعد از اینکه متن ورودی ما در قالب nسطر مجزی شد(کاری که تو فاز اولیه خیلی پروژه های پردازش متن میبینیم) تو فاز Map در واقع یه Key Value درست میشه و ابتدا با نگاشت 1 به همه کلمات کار شروع میشه. ورودی فاز Shuffling در واقع خروجی فاز Map هستش و میاد کلمات یکسان رو ادغام میکنه و کنار هم قرار میده تا بعنوان ورودی بفرسته به فاز Reduce.  و تو فاز Reduce هم فرآیند تجمیع مقادیر تکرار کلمات موجود در متن متناظر با کلمات که کلید هستند انجام میشه.

آپاچی اسپارک

مهم است بدانیم هر Node و Cluster یه JVM مجزی داره.

اسکرول به بالا